An Inverse Optimal Stopping Problem for Diffusion Processes

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On an Optimal Stopping Problem of Time Inhomogeneous Diffusion Processes

For given quasi-continuous functions g, h with g ≤ h and diffusion process M determined by stochastic differential equations or symmetric Dirichlet forms, characterizations of the value functions eg(s, x) = sup σ J (s,x) (σ) and ¯ w(s, x) = infτ sup σ J (s,x) (σ, τ) are well studied so far. In this paper, by using the time dependent Dirichlet forms, we generalize these results to time inhomogen...

متن کامل

Optimal results for a time-fractional inverse diffusion problem under the Hölder type source condition

‎In the present paper we consider a time-fractional inverse diffusion problem‎, ‎where data is given at $x=1$ and the solution is required in the interval $0

متن کامل

Discounted optimal stopping for maxima of some jump-diffusion processes∗

We present closed form solutions to some discounted optimal stopping problems for the maximum process in a model driven by a Brownian motion and a compound Poisson process with exponential jumps. The method of proof is based on reducing the initial problems to integro-differential freeboundary problems where the normal reflection and smooth fit may break down and the latter then be replaced by ...

متن کامل

The Inverse First-passage Problem and Optimal Stopping

Given a survival distribution on the positive half-axis and a Brownian motion, a solution of the inverse first-passage problem consists of a boundary so that the first passage time over the boundary has the given distribution. We show that the solution of the inverse firstpassage problem coincides with the solution of a related optimal stopping problem. Consequently, methods from optimal stoppi...

متن کامل

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Operations Research

سال: 2019

ISSN: 0364-765X,1526-5471

DOI: 10.1287/moor.2018.0930